Limits

Instructional Focus	4 - Mastery	3 - Proficient	2 - Basic	1 - Below Basic	$\mathrm{O} \text { - No }$ Evidence
Estimate limits of functions graphically and numerically (LIM-1.A, LIM-1.C, LIM-2.D)		Find a limit graphically and numerically using proper notation with all of the following: - Limits - One sided Limits - Limits at infinity - Infinite limits - Limits that don't exist and interpret the behavior of functions Follows math practices of algebraic computation, precision and reasoning*	Find a limit graphically and numerically using proper notation with four of the following: - Limits - One sided Limits - Limits at infinity - Infinite limits - Limits that don't exist and interpret the behavior of functions	Find a limit graphically and numerically using proper notation with three of the following: - Limits - One sided Limits - Limits at infinity - Infinite limits - Limits that don't exist and interpret the behavior of functions	
Determine limits of functions algebraically (LIM-1.A, LIM1.B, LIM-1.D, LIM-1.E)	Can extend thinking beyond the standard, including tasks that may involve one of the following: - Designing - Connecting - Synthesizing - Applying - Justifying	Determine limits of functions using correct notation with all of the following - Squeeze Theorem - Algebraic manipulation - Algebraic rules (sum, difference, product, quotients) - Composite Functions - Trig Functions and interpret the behavior of Functions Follows math practices of algebraic computation, precision and reasoning*	Determine limits of functions using correct notation with three of the following - Algebraic manipulation - Algebraic rules (sum, difference, product, quotients) - Composite Functions - Trig Functions and interpret the behavior of Functions	Determine limits of functions using correct notation with two of the following - Algebraic manipulation - Algebraic rules (sum, difference, product, quotients) - Composite Functions - Trig Functions and interpret the behavior of Functions	Little evidence of reasoning or application to solve the problem Does not
Apply concepts of continuity (including the intermediate value theorem) (LIM-2A, FUN1.A, LIM-2.B, LIM-2.C) *Assessed in another unit	- Analyzing - Creating - Proving	Do all of the following: - Apply continuity in terms of the three part definition - Determine type of discontinuity - Determine if IVT, EVT*, and MVT* are applicable - Identify functions that are continuous in their domain Follows math practices of algebraic computation, precision and reasoning*	Do three of the following: - Apply continuity in terms of the three part definition - Determine type of discontinuity - Determine if IVT, EVT*, and MVF* are applicable - Identify functions that are continuous in their domain	Do two of the following: - Apply continuity in terms of the three part definition - Determine type of discontinuity - Determine if IVT, EVT*, and MVT* are applicable - Identify functions that are continuous in their domain	criteria in a level 1
Applying the definition of derivative (CHA-1.A, CHA-2.A, CHA2.B)		Apply the definition of derivative using correct notation to algebraically find the derivative of a function in general and at a point and interpret. Follows math practices of algebraic computation, precision and reasoning*	Apply the definition of derivative using correct notation to algebraically find the derivative of a function in general or at a point.	Use substitution to set up the definition of derivative in general or at a point.	

*Math Practices for AP Calculus include:

- Algebraic processes and computations completed logically and correctly
- Attend to precision graphically, numerically and analytically
- Clearly present reasoning and justification with accurate and precise language

