Limits

Instructional Focus	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Fvidence
Estimate limits of functions graphically and numerically (LIM-1.A, LIM-1.C, LIM-2.D)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving	 Find a limit graphically and numerically using proper notation with all of the following: Limits One sided Limits Limits at infinity Infinite limits Limits that don't exist and interpret the behavior of functions Follows math practices of algebraic computation, precision and reasoning* 	 Find a limit graphically and numerically using proper notation with four of the following: Limits One sided Limits Limits at infinity Infinite limits Limits that don't exist and interpret the behavior of functions 	 Find a limit graphically and numerically using proper notation with three of the following: Limits One sided Limits Limits at infinity Infinite limits Limits that don't exist and interpret the behavior of functions 	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Determine limits of functions algebraically (LIM-1.A, LIM- 1.B, LIM-1.D, LIM-1.E)		 Determine limits of functions using correct notation with all of the following Squeeze Theorem Algebraic manipulation Algebraic rules (sum, difference, product, quotients) Composite Functions Trig Functions and interpret the behavior of Functions Follows math practices of algebraic computation, precision and reasoning* 	Determine limits of functions using correct notation with three of the following • Algebraic manipulation • Algebraic rules (sum, difference, product, quotients) • Composite Functions • Trig Functions and interpret the behavior of Functions	Determine limits of functions using correct notation with two of the following • Algebraic manipulation • Algebraic rules (sum, difference, product, quotients) • Composite Functions • Trig Functions and interpret the behavior of Functions	
Apply concepts of continuity (including the intermediate value theorem) (LIM-2A, FUN- 1.A, LIM-2.B, LIM-2.C) *Assessed in another unit		 Do all of the following: Apply continuity in terms of the three part definition Determine type of discontinuity Determine if IVT, EVT*, and MVT* are applicable Identify functions that are continuous in their domain Follows math practices of algebraic computation, precision and reasoning* 	 Do three of the following: Apply continuity in terms of the three part definition Determine type of discontinuity Determine if IVT, EVT*, and MVT* are applicable Identify functions that are continuous in their domain 	 Do two of the following: Apply continuity in terms of the three part definition Determine type of discontinuity Determine if IVT, EVT*, and MVT* are applicable Identify functions that are continuous in their domain 	
Applying the definition of derivative (CHA-1.A, CHA-2.A, CHA- 2.B)		Apply the definition of derivative using correct notation to algebraically find the derivative of a function in general and at a point and interpret. Follows math practices of algebraic computation, precision and reasoning*	Apply the definition of derivative using correct notation to algebraically find the derivative of a function in general or at a point.	Use substitution to set up the definition of derivative in general or at a point.	

*Math Practices for AP Calculus include:

- Algebraic processes and computations completed logically and correctly
- Attend to precision graphically, numerically and analytically
- Clearly present reasoning and justification with accurate and precise language